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Abstract

The paper begins with a short overview of the recent work done in the field of discontinuous reinforced

composites, focusing on the different parameters which influence the material behavior of dL_continuons

reinforced composites, ms well as the x_rions analysis approaches undertaken. Based on thgs overview

it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive

manner, an alternative approach to the compntationally intensive finite-element based micro-mechanics

approach is required. Therefore an investigation is conducted to demonstrate the ntiliD of utilizing the

generalized method of cells (GMC), a semi-anal)_ical micromechanics-based approach, to simulate the

elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared

with 1) simulations using other micromechanical based mean field models and finite element (FE) unit

cell models found in the literature given elastic material behavior, as well _._ 2) finite element unit cell and

a new sen_-anal_ical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely

have a window of applicability when simulating discontinuonsly reinforced composite material behavior.

1 Introduction

Metal matrix comlx_sites (MMCs) have receix_[ considerable attention over the past 30 ._.am due to

their attractive specific strength, stiffness, fatigue and thermal properties[Clyne and Withers (1993)], [Kelly

and Zweben (Eds) (2000)], [Sinclair and Greg_n (1997)], [Lloyd (1994)]. MMC materials can be gener-

ically classified _ their type of reinforcement, which consists of either continuous fiber (identified herein

&s CFMMC) or discontinuous particulate (termed herein _s DI_X) reinforcements. \\_ile both cl&sses of

materials share common features at a fundamental lexlel (e.g., matrix/reinforcement compatibility, interra-

cial properties sensitixity, ardfitectural interaction (reinforcement size, shape and packing) and property

optimization, at a practical level dramatic differences can and do exist. For in.stance, CFMMC t3_pically

have exoeptionally high strength and stiffness capabilities that are inherently strongly anisotropic: whereas.

DFLX material properties are typically more isotropic in nature x_th lower specific strength, yet have excel-

lent stiffne_ capabUit3- Clearly, failure to appreciate and consider explicitly the appropriate reinforcement

morphologT can r_ult in inaccurate performance assessments, _s elaborated upon in the next ,_ection. The

combination of good transverse properties, relatively low cost, high workability and ne_onable increases in
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performance over monolithic metallic alloys hax_e made discontinuous reinforced materials the mo_t commer-

cially attractive system to date for many stiffness dri__n application_ [Clyne and Withers (1993)], [Kelly and

Zweben (Eds) (2000)],[Miracleand Maruyama (2000)].

Although manufacturing issues and cost are probably the greatest impediments to the wide application of

these adx_mced materials, it is also clear that accurate design and life prediction tools are greatly needed to
facilitate the implementation of these developing materials. Although clasure has not been reached regarding

the best model.s for use in design and life prediction, it has become exJ<__ut that if a model is ever to serve a

purpose beyond that of basic research, it must fulfill _everal primary requirements. These include a significant

level of accura_ on both the macro and micro scales, computational efficient-, and compatibility with the

finite element method. Fulfillment of these requirements allows a model to .serve the composite developer

_- enabling quick and easy xariation of composite parameters for material de_e]opment and optimization

purposes. Like_e, thase who attempt to utilize composites in structural deMgn are well serv_t if the model

is compatible with the finite element method. The generalized method of cells (ChiC), originally developed

_" Aboudi (1991, 1995), is a good choice for implementation into modeling tools for adxanced composites,

given the requirements described above. Particularly, whenever microfield ms well as macrofield quantities

_ll be needed - as is the case when attempting to account for inelastic material behavior in MMCs.
GhlC Ls a fullyanalytical micromechani_ model for multi-ph_ materials with arbitral- periodic

microstructures. It pro_4cle_ pr,eudo dosed-form multiaxial con_stitutive equatious for such materials, and
allows stralghtfomvard implementation of physically-based x%scoplastic deformation models, as _ell as arbi-

tram" failure and damage models for each phase. Further, recent indepen_t ad_nce_ have simplified the

implementation of GMC as an elemental constituent material model in finite element analysis [Arnold et al,
(1999)], and significantly increased the model's computational efllclen_- [Pindera and Bednarc3"k (1999)].

Chic has been implemented in the NASA Glenn Re_amh Center comprehensive micromechani_ analysis

code, hIAC/GMC [Arnold et al, (1999)]. The code has many features that render it u_ful for design, de-
formation modeling, and life prediction for a wide range of material_. These features include the ability to

simulate general thermomechanical loading on compasites whose geometries are represented _- a libra," of

continuotm and dLscontinuons repeating unit cells, a libraD" of nonisothermal elastic/_%scoplastic con,stitutive
models, fatigue damage analysis, yield surface analysLs,laminate analysis, and interface modeling.

In the past, the various capabilities described above have been exemised exteusively, however, the pre-

dominant material _'stem examined has been that of the CFMMC [Aboudi(1996)], [Arnold, et. al. (1996)],

[Goldberg and Arnold (2000)], [b_er et al. (2000)], [BednarcTk and Arnold (2000a)], [Li_enden et al. (2000)],
[Bednarcyk and Arnold (2000b)]. Consequenth-,the primary objective of this current study is to assess the

applicability of CMC in predicting the elastic and inelastic (plastic) beha_4or of particulate reinforced com-
posites (DI_Xs). The literature indicates that DI_X beha_5or is significantly influenced by xarious charac-

te_stic parameters like fiber arrangements (staggered, non-_taggered, duster, random, packing type), fiber

velume fraction, fiber aspect ratios, fiber-matrix stiffness rations and reinforcement _'pe (_'linder, particle,
etc. ). A brief review of this is proxSded in the background section. Even though GMC iz flflly capa-

ble of modeling arbitral" multiphased composite ardfitectures, to facilitate comparison with previous w_rk

reported in the literature and limit the _cope of this investigation, only one type of DI_X is cousidered,

namely, the simulation of aligned short fiber comt_sites with non-6taggered _'lindrical reinforcements and a

hexagonal packing arrangement. The need for such an a.usessment stems from the fact that although ChIC
con.sLsts of analytical equations that are able to _ with both the homogenization and localization proce_

for composite materiaLs in averT numerically efficient way, the method's linear displac_,.ment field aa_umption

in combination with the imposition of displacement and traction boundary conditions in an average sense,

gives _ to an inherent lack of normal and shear component coupling. This lack of coupling is such that

application of a global normal (or shear) stre_ field will produce ouly a local normal (or shear) stress field.
Consequently, for cas_ (e.g., DI%X materials) in which the load transfer mechanism between phases (e.g.,

matdx and fibers) is shear dominated, the lack of normal-_hear couplin_ may become quite problematic.

In particular, in the _ of an elastoplastic matrix regime placed between two short fibers, CMC's lack of

shear coupling requires both the fiber and matrix to carry the same normal stress component. This tends
to produce an overly compliant (soft) composite response. The results presented within demoustrate this
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fact, and more importantb" characterize the winck)w of applicability for the GMC method x_Sthin the context

of discontinuotmly reinforced metallic composites. The introduction of an "artificial" elastoplastic matrix

material betxveen the particulate reinforcements, Ls proposed in an attempt to extend the applicability of

GMC. Although, providing more reasonable macro _ha_ior, such a strateKy still results in incorrect mi-

cromechanical stress fields within the unit cells, thereby limiting the usefulness of the current GMC model

when calculating failure or fatigue analy.ses.

With section 2, the paper begins _" rexSexxdng recent _x_ark clone in the field of .short fiber compc_sites .so

as to rex_.l the k_" parameters influencing Dl_X material behaxSor. Section 3 then articulates the xurious

analytical and numerical approaches empl_-ed and compared in this paper. Finally, section 4 presents a

comparison of GMC results with other analytical and numerical results within the elastic and elastoplastic

range, mspectivel3.

2 Background: Factors Influencing DRX Materials

The early work on the principles of strengthening in compc,sites reinforced with discontinuous fibers,

whiskers or particulates carried out in the 1950's and 1960's i,s characterized _" the use of relatively simple

models that do not explicitly take into account the actual indusion distribution through interaction between

adjacent inclusion_s. Many models have been empl_'ed to stu_" the effect of inclusion shape on the elastic

moduli, as well as subsequent inelastic response, and aLso the mechanism of stress tran,sfer from the matrix

to a finite-length fiber. For i_stance, Eshel_"s analytical solution to the problem of an arbitrarily shaped

ellipsoidal inclusion embedded in an homogeneous material deformed _" uniform tractions or displacements

at infinity has formed the basis for calculating the effective respowse of macroscopically homogeneous two-

phase composites using a number of approaches [Eshel_" (1957)]. These approaches include the self-cousistent

schenm which neglects the inclusion/matrix interaction in calculating stress fields in the inclusion phase [Hill

(1965)], and the Mori-Tanaka method (MTM) which takes this interaction into account in an approximate

fashion [Mori and Tanaka (1973)]. The problem of an array of elUpsoidal inclusions x_ith different aspect
rations emkmdd_ in an elastoplastic matrix can be treated uzing the Mori-Tanaka approach, as x_s done

_" [Bro_x_n and Clarke (1975)] inx_stigating the effect of inclusion shape on work har_xing of metal matrix

composites. Hox_ever, this method typically underestimates yielding and subsequent har_z_ng effects due to

the ttse of mean stress and strain fields in the matrix phase, and treats all inclusion distributions on the .same

footing .so long as macroscopic homogeneity is preservecL Along similar lines, the so-called shear-lag analysi,s

has been empl_'ed to stud)- the effectiveness of short fibem as minfomement using the streagth-of-materiaLs

approach to analyze stress fields around and _ithin a finite-length fiber embedded in a surrounding matrix

[Dow (1963)]. \\_le this type of analysi_s helps to identifT shearing of the matrix as the primaD" mechanism

of force transfer from the matrix to the fiber, and thus the critical fiber length over which the axial stress is

introduced into the fiber from both ends, it is based on a ve_" simplified one-dimensional analysis of stress

fields which neglects the influence of morpholoKy of .surrounding fibers, among other thinb-s.

Despite the relativeb long histom" of modeling the response of discontinuous fiber, compc_sites, only

recently have systematic inx_tigations of the effects of reinfomement shape and arran_anent been initiated

for these types of composites. Inclusion of the third dimension in the analysis of the elastic and inelastic

response of discontinuotts fiber composites increases the number of x_riables several fold relative to the

analysis of continuous fiber composites. Thus, in addition to the arrangement and shape of the reinforcement

in the plane transveme to the loading direction, x_riables associated _xdth the planes parallel to the loading

direction _lere included. These _ariables include the fiber aspect ratio, fiber spacing in the vertical and

horizontal direction,s, those associated with the effect of fiber clustering, and the extent of overlap between

adjacent columns of fibem. These added complexities _'pically require numerical .solution procedures, .such as

the finite-element analysLs; particularly if complicated reinforcement shapes and arrangements are inx_lved.

Finite-element inx_stigations carried out in recent 31earn have focused on separating the effects of inclusion

shape from the effects of inclusion packing array geometD" on the overall elastic, elastoplastic and creep

behaxdor. Due to many different types of reinforcement employed in discontinuously-reinforced comp¢_sites,

including whiskers, particulates, platelets as well as finite-length fibers, extensive analyses of inclusion shape
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have been conducted for this class of composites. Examples of inclusion shapes inv_tigated include spherical

particles, circular _'lindem _dth different aspect rations, truncated circular (octagonal) _'linders, double-cDne
pa_id_, and ellipsoidal or disk-like particles(platelets). Similarly, different packing arrays studied include

hexagonal arrang_nents of inclusions in the plane of loading distributed in either regular (aligned) arrays or

off-_et (stas_ered) afro's in the planes parallel and pe_dicular to the loading direction so as to model and

a._e_s the influence of distribution randemne_s that is typical in DI_X composites. Inclusions such a.s disk-

like particles arrang_._(t in packet morphologies have also been conbsidered, a.s have clustered arrangements.

These inx_tigations ha_ been driven in lar_ part _- the wide range of inclusion morphologies that r_ult

from current material processing techniques, as well a.s by the wide range of shapes ax_lable for the inclusion

pha.se.

In order to reduce the complexity of a three-dimensional finite-element formulation in analyzing the
respon_se of dLscontinuous fiber, whisker or particulate composites, _arious idealizations of the unit cell have

been employed _ a number of researchem (e.g. clusters of whiskers or _qindrical particle_ in the plane

parallel to the applied load have been modeled using a plane strain ic__alization of r_"tangular platelets).

This effectively reduces the problem to that of a continuously reinforced comlx_site subjected to loading

in the plane perpendicular to the long fiber direction. The results of such analy.sis for rectangular cr_ss-

.sections with different aspect ratic,s in the plane of loading should be easilydeduced from the earh" analy,_is

of continuously reinforced composites with r_ctangularly shaped fibers [A.shton et al.(1969) ]. In the case of

a hexagonal arr_" of inclusions in the plane transverse to the loading direction, the problem is often reduced

to an axis33mLmetric (i.e., two-<tun"eusional) problem _" approximating the unit cell using a circular _-linder

with different types of lateral tx)uncla D" conditions to .simulate the interaction _ith adjacent fibers (i.e., unit

celts). U.sing this model, different fiber arrang_._ments in the plane parallel to the applied load have been

investigated, with _trTing amounts of o_rlap bet_en vertical columns of adjacent fibers (e.g. [Christman

et al. (1989)], [Tvergnard (1990)], [Dragone and Nix (1960)], [Povirk et al. (1990)], [Yang et al. (1991)],

[Bao et al.(1991)], [Siegmund et al. (1992)]). In contrast to continuously reinforced composites, the inclusion
arrangement in dLscontinuously reinforced compczsites Ls inherently three-<timensional, so that the u_ of

plane modeis requires cousiderable caution. The results of fully three-dimem_ional finite-element analyses

of such periodic arrays are al_ available (e.g. [Le_T and Papazian (1990)], _V_bek and l_.mmerstorfer
(1993)], lAbel et al.(1993)], _Veissenbek et al. (1993)]). The" are, however rather restrictive in terms of

fiber arrangement.s and shapes, and tend to entail considerable computational costs. Both three-dimensional

and axis33nmetric unit cell modem have been used sucee_fully for studying the nonlinear thermomechanical
behavior of aligned short reinforced composites.

The literature .sur_" presented indicates .significant influence of both inclusion shape and distribution on
the elastic, elastoplastie and creep response of dim_ontinuous fiber compo.sites. The extent of this influence for

a gi_m fiber ardfitecture depends on the inclusion content, inclusion/matrix material property mismatch, and

the direction of applied load _dth r_pect to the internal micro-_tructure. The influence of fiber as_itecture

on the respon_se of DI_X composites is .significant and is based on a .substantial number of instigations,

each of which was neomsarlly limited in .scope due to the pre_dent use of the finite-element approach in

modeling the response of the investigated arc_tectur_s. Thus while a considerable bed)" of lmowledg'e

has been _enerated that sheds light on the effectix_.ue_ of different fiber ard_itectures in strengthening
discontinuous fiber composites, cousiderably more systematic research is required to develop design suidelines

for optimization of material performance threu_h fiber architecture manipulation.

Ho_ver, it becomes clear, based on the abo_ _ion, that in order to investigate the enumerated

effect.s in an efficient and comprehensive manner, including parametric .studies involving fiber content and

material property n_sanatch _ariatious, an alternative approach to the computationally intensive finite-

element based micromechanics approach is requirecL This is paxticularly true when inelastic (_coplaztic)

theories, which typically require computationally intensive inteb_ration algorithnm, are employed to model

the response of metallic matrices. Therefore, the objective of this paper is to apply the computationally

efficient GhIC method so as to determine it.s sultabili_" for predicting the macr_copic response of alignecL
DI_X materials.
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3 Modeling Approaches

All simulations conducted in this study cousi.st of aligned short fiber composites, wherein the particulates

(wiskers) are idealiz_l as non-staggered, _qindrical reinforcements, with a hexagonal packing arrangement.

Similarlyother basiccoustraintsiml_sed are as follows:

• The inclusion properties are assumed lsotropic and linear elastic, while the mat_x Ls taken to be

L_otropic elastopl_stic with L_otropic harc_aling.The material data for both the inclusion and matl__x

are treated as tenlperature-independent aJld L_otropic.

• The inclusiousare a_s3_mletric, identicalin shape and sizeand can be characterized_ an aspect

ratio,a_, that relatethe length ofan inclusionto itsdiameter.

• [m_stigated model parameters arethe fiber(inclusion)x_>lumefraction(_ ----0.-°.0.5),the fiber-mat_x

stiffness ratio (s_ = EF/Eat ----3.30) and the fiber aspect ratio (a_ ffi l/d = 5. 15.25).

• The inclusious and matrix are xuel] bonded at their interface and remain that w_" during deformation.

Thus, we do not cousider interfacial slip, fiber-matrLx debending or mat_x micro-cracking.

• No time dependence (relaxation or creep) effects are included in the present analysis.

Note, obtaining experimental reference data for unidirectional short fiber coml:_sites appears to be problem-

atic, as it has not pro_ed txxssible to produce physical samples with perfectly aligned fibers. Consequently, in

this paper _e avoid thLs additional complexity of orientation effect by using three-dimensional finite element

analysis of aligned short fiber compasites as our reference standard, rather than experimental re_ts.

3.1 Material Data

The material properties used for all calculations are sixth in Table 1. These properties are in the range

of typical fiber-reinforced engineering thermo-plastics (PMC's - Material 1) and metal matrb_ comIxxsites

(hlhiC's - Material 2), respectixel3: The following input data are needed for both components: _'oung's

modulus E and Poi,sson's ratio u. The yield stress try and the hatching modulus EH are needed for the

matrix material onl):

Table 1: Prototypical material properties used for all calculations.

Material 1 (s_ ----30)

Property Fiber Matrix

E (GPa) 300. 10.
u 0.17 0.33

_'y (MPa) - 20.

EH (GPa) - 0.1

Material 2 (sa = 3)
Fiber Matrix

300. 100.

0.17 0.33

200.

1.0

3.2 A_alytical Models

In the I_st, numerous analytical models ha_le been examined in an attempt to determine the "best"

(see e.g., [Tucker and Liang (1999)], [Abeudi (1991)]) ax_Jlable analytical model for predictin_ the elastic
stiff-n_s }_.haxior of aligned short fiber reinforced compasites relatix_ to reference FEA-model represen-

tatious. Analytical models considered, were models such as: the Mort-Tanaka method (MTM)[Mori and
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(a) (b) (c)

Figure 1: Sketch of inclusions-matrix shapes for the applied aligned short fiber composite modeLs. (a) Mort-

Tanaka model, (b) Hashin-_Shtrilm_an estimates of Ponte Castafieda and Willis, (c) GMC-model (a,. = 5.0)

Tanaka (1973)], seff-con,slstentmodels, bounding modets (e.g.,xariable con,straintmodel (VCM) and Hashin-

Shtril_nan bounds and estimates), Halpin-Tsai equation,s and shear lag models (,see Appendix B for details

of the elastoplastic extension used in this stud)'). For example, the recent work of [Tucker and Liang (1999)]

recommended that the Mort=Tanaka model was the "best" choice for estimating the overall elastic stiffness

behavior of aligued short fiber composites.

In this study we xviU extend the .scope of comparison to include the semi-analytical generalized method of

cells model (GMC) and compare GMC with the MTM. VCM, FEM results and Hashin-Shtrihnan estimates

(HSE) 1 of [Ponte Castafieda and Willis (1995)]. Benvezfiste (1987) has prodded a particularly simple and

clear explanation of the Mort-Tanaka approach. Analytical bounds for the stiffness behavior can be obtained

from the x_.riable con,straint model (VCM), published _" [Pedersen and Withers (1992)]. From a practical

point of view it is of interest that the lower (VCh[) bound corresponds to the standard h[ori-Tanaka results,

while the upper (VCM) bound can also be obtained from the Mort-Tanaka approach after a .so called "color

inversion" (i.e., exchanging the roles of inclusion and matrix). These bounds obtained from the Mort-Tanaka

approach also correspond to the Vfillis bounds in the case of aligned inclusion.s, compare for example, _Veag

(1990)].

It is important to remember that the basic assumption of the Mort-Tanaka method ls that the aligned

ellipsoidal inclusions are surrounded _" coaxial aligued ellipsoidal matrix domains in which both ellipsoids

have the same aspect ratio (Fig.la) and that each inclusion (fiber) _ithin a concentrated composite sees the

average strain of the matrix. Consequently, the MTM provides only macro (average) fields and properties

and therefore lacks the ability to address adequately problems dominated _" microfield quantities, such as

damage and inelastic behavior analysis. Alternatively, GMC allows both homogenization and localization of

the associated stress and strain fields (see Appendix A), theret_." proxiding not only macro sti@ness properties

but also local eige_strain field quantities. Note, that in the present investigation the GMC unit cell differs

from MTM as different fiber-unit cell aspect ratios (Figs.2 and 3) can be realized since the whole inclusion

(fiber) is surrounded by a matrix material layer of constant thickness (side-to-side and end-to-end distances

are equal) and labeled, e, subsequently. Because of this _rying aspect ratio, HSE for the prediction of the

effective moduli of the elastic inhomogeneous material given in [Ponte Casta_eda and Wqllis (1995)] are also

introduced (Fig. lb) to overcome the drawback of the original Mort-Tanaka method so that different fiber-unit

cell aspect ratios can be malizecL Note, these Hashin-Shtrilanan estimates correspond identical])" with the

MOrioTanaka method for the ease of aligued_ co&xial inclusions _dth equal aspect ratios of the inclusion and

the surrounding matrix ellipsoids (see [[-Iu and Vfeng (2000)])

1Note. the HaahinoShtrikman estimates differ from the Hashln-Shtrikman bounds, as [Ponte Casta_eda and Willis (1995)]

and [Willis (1977)] reraoved the restriction of statisticalb" isotropic overall material _'mmetry (used by both HS and Willis)
by separating the spatial distribution of inclusions from the inclusion shape. Also in the HSE, [Ponte Castafieda and Willis

(1995)] empt_'ed only a single reference material (e.g., the effective material like in self consistent models) instead of the two
used _" [Willis (1977)].

NASA/TM--2001-211165 6



3.3 Generalized Method of Cells

Although, GhlC Ls capable of analyzing any multiphased compasite material x_ith an arbitral" internal

microstmcture and reinforce_nent shape (,see Appendix A), the unit cell analyzed in th_s stu_" Ls sho_-_

in Fig. 2. Due to the periodic bounda_ conditions inherent to the ChiC-model the whole P_\;E mtmt be

modeled, instead of only a quarter of the unit cell (.see the da.shed rectangle in Fig. 2) as typically done

in the case of FEA representations where s)_ametric beunda_" conditions are applied. Apart from th_s

x3

x 2

Xl

Figure 2: Aligned short fiber GhIC unit cell model, comprised of 338 suboelLs.

fact, the unit cell dimensions were chosen similar to the dimensions of the FE-model (see Fig. 3). The fiber

was approximated with more than one subcell (sufficient for the longitudinal stiffness behax_or) in order to

reduce the error in the transverse response (i.e., the difference between E22 and E33) and better approximate

the targeted transversely i,sotropic response behavior resulting from a hexagonal packing arrangement. The

crass ,sectional area of the approximated fiber is taken equal to the cr_ss sectional area of the actual circular

fiber. These conditions, together with the tmown fiber diameter, fiber volume fraction, and the distance, e

(see Fig. 3) suffice to determine the dimensions of the unit cell for each fiber aspect ratio a_=ly./df. All

GMC analy,ses were realized with the computer code hLAC/GMC [Arnold et al.(1999)] developed at the

NASA Glean Research C__nter.

3.4 Finite Element Models

The finite element unit cell analy2_d consisted of an i_mtical periodic, three dimensional non-staggered

array of fibers (similar to that ichalized with GMC) _ith the corresponding dimensions sho_-n in Fig. 3. The

unit cell dimension were chosen such that b would be proportional to a (i.e., b ---- 3a) through the constant

3. In the c__se of hexagonal packing, 3 = v/-3, and the distance between neighboring fiber ends (end-to-end

distance, equal to c - If in Fig. 3) wa.s .set to the clasest distance bem_een txxx> fibers (side-to-side di_stance,

equal to e in Fig. 3).

These conditions, together with the fiber diameter and volume fraction, suffice to determine the dimension

a, b and c for the repeating volume element (]_VE) to be analyzed. Note that a new unit _ll and its

corresponding 3D mesh are generated for each fiber aspect ratio (l/d) and fiber x_lume fraction (v f).
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GMCunitcell FEunitcell

X2

X3

Figure 3: Example representatix_e volume element and finite element unit cell for a_ = 5.0 and t_- = 0.2

Stiffnesses_ithin the elasticand plastic range of these unit celtswere calculated using [ABAQUS (1998)].

Full)" integrated, first order, solid elements 2 were used, as this element type does not suffer from xz>lumetric

locking, which is critical for accurate elastoplastic calculations. The mesh _tization containing 13,300

elements employed is shown in Fig. 3. This mesh density is approximately three times finer than that used

_- [_Veissenbek and Rammerstorfer (1993)] and was shown during the course of this w_ark (by convergent"

studies) to be suffidently accurate for both elastic and inelasticanalysis. Modeling of only one eighth of the

whole I_VE (depicted on the left) was achiex_zi due to the use of appropriate _nmetric boundarT conditions.

For example, when considering axial or tra_sx_erse loading, s)_nunetry requires all faces of the unit cell to

remain plane. Consequently, to determine Ell and u12 the normal displacements of the front (Xl ---- 0), left

(x2 ---- a/2) and bottom (xz ---- 0) faces of the unit cell were fixed. Then a master node was defined (the

intersection point of the back, right and top face) and linear constraint equations applied on the back, right

and top face such that the normal displaomnents of all nodes (except the master node) on these faces were

set equal to the normal displacements of the master node. The tangential displacements on all faces were left

unconstrained. The average (marco) stress was then computed from the reaction force of the master node

divided _, the cr_ss-sectional area normal to the reaction force of the inx_stigated unit cell. Similarly, the

ax_erage (macro) strain was computed _" dividing the displacement of the master node _" the corresponding

length of the unit cell. For convenience, a one Newton load was applied to the unit cell.

Analogous condition,s were used to load the unit cell in the x2-direction to determine E_ and u23.

The fifth and final independent material parameter for transversal isotropic material, the longitudinal shear

modultts G12, could also be determined using the unit cell shox_n in Fig. 3, assuming the appropriate periodic

boundary conditions were applied to each face. This more complicated analysis was not undertaken at this

time.

4 Results

4.1 Elastic Material Behavior

All of the analytical micromechanics theories used in this stud)" predict full transversely isotropic prop-

erties. Transx_erse isotropy about the xl ax£s implies that the stiffnee_s behavior is the same for an)" loading

21n [ABAQUS (1998)] this is the element known as C3D8.
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dir_tion in the 2-3 plane: consequently, thgs not only requires that E22 = E33, but aLso that

E22

G23 = 2(1 +1_23)" (1)

Therefore, only fixle independent stiffness constants (e.g., Ell. E22. _q2. z_23 and C,12) need be determined for

the case of traxm_rue i,sotropy. Periodic unit cells with hexagonal packing should be trarmx_rsely isotropic

a,s there are six planes of s31amletr3. Howex_r, sinoe periodic betmdary conditions were not applied to the

FE unit cell, we were unable to obtain GIo from the FE inx_tigations. Cot_sequently, we will limit our

comparLson for the xariotm approaches to the prediction of Ell, E22, tJ12 and tJ27, only.

Results of the normalized &-dal modultLs (×1- direction, ._caled _" the matrb: modulu_s) obtained from the

VCM-model (MTM-model), Hashin-Shtrikanan estimates, GMC-, and FE-model are shox_a in Fig. 4 (Di_X

like materials with a lower stiffness ratio, e.g., s_ ----3) and Fig. 5 (PMC like material, x_ith a higher stiffness

ratio, e.g., s, = 30) for numerotLS fiber aspect ratic_s and two fiber x_htme fraction,s, a low (vf = 0.2) and

a high (v]. = 0.5). The H&shin-Shtril_an-, GMC- and FE-modegs x_re exaluated only at d_serete a,spect

rations: whereas, the VCM-result were computed for many different aspect ratios and thns clizpl_ed with a

solid line. Note, for high stiffness rations only the lox_er VCM-bound (which corresponds to the MThl) wa.s

plotted. From Fi_. 4 and 5 it Ls apparent that the influence of fiber aspect ratio on Ell Ls significant (May

error of 35°'/o) for a composite with a high stiffia_ ratio wher_s relatix_ly inzignificant (Max. error of 3%)

for materials with a low stiffness ratio. In both cae_ the Ha,_fin-_Shtrilmaan estimate l_- a.s expected within

the upper and lower VCM bounds. The GMC- and FE-results are partially out of the Mori-Tanka ba,_l

VCM-bound.s due to the different indu,sion topology (ellilmoidal xersuz cylindrical). C_enerally speaking,

the GMC-model underestimate_ the longitudinal stiffness, particularly for high stiffne_ ratias, although the

trend Ls captured quite nicely: Altematix_ly, for materials x_th low stiffne_ ratios, good agreement betx_leen

GMC and Hashin-Shtril_nan e_timates as compared x_ith FE-results are oh6erx_d given a wide range of

aspect ratios and fiber x_lttme fractions.

._ 2.5-

_ 2

e-

= 1.5
>-

<

1

VCM L.B.
-- VCM U.B.

HS-Estimates
0 FE-Results
A GMC-Results

VF=0.2

, I ,
10

Aspect Ratio. a_

100

Figure 4: Comparison of axial modulu_s rati(_s for s, =E,EKe- = 3

The physical reason for the difference betweea the FEA-r_ttlts and tho_e of GhlC can be inferred from

Fig. 6, where the longitudinal stress distributions for a load in the xl-direction are shox_a. In both FEA

analyzes shown in Fig. 6, the geometD', boundary condition.s, and applied forces are the ._ane. Onb" the

stiffness ratio bet_een matrix and fiber constituent material Ls different. Ex_c_.ntly, these str_s contoum
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indicate that an increaae in the stiffness ratio leads to a decrease in the matrix loading and conversely to

an increase in the fiber loading (_ee maximum and minimum stre_s ,_alues). Similarly, the difference of the

"mean" matrix stress in the x_lume of material bett_een the tx_ fiber ends as compared with the ''mean" fiber

stress becomes greater as the stiflhe_ ratio is increa._L Considering, the GMC represeatation, the stre_
are constant and equal along a longltudinal fiber-matrix row. Therefore the error for iot_er stiffness ratios

is decreased, yet when the stifhless ratio increases so too does the error. Figure 6 alzo gix_-_ an explanation

&s too w_" the GMC stiffness r_ults are slightb" under the FE-result_ in Fig. 4, as the GMC as,sumptious
lead to an unloading of the "stiff" fiber and to an additional loading of the "soft" matrix.

Figures 7 and 8 illustrate the normalized transverse modulus results obtained from the variotLs analytical

and numerical methods considered. Here as one wxmld expect, the fiber aspect ratio has Uttle, if any,

effect on the transverse modulus Also, in general the GMC results compare favorably (maximum error of
approximately 5%) with the FE-results throughout. For both stiffness ratios, the Hashin-Shtrikman estimates

are equal to the lower VCM bound (which in turn are equal to the original MTM-results). Notex_x_rthy is the

fact that the GblC-results are much closer to the FE-results for the case of high stiffness ratios, lot" aspect
ratios, and high fiber x_lume fractious than the other analytical estimates. Similarly, as obs_erved for the

longitudinal stiffness the qualitative trend of the FE results is better captured b3."GMC.
To help explain this olmemation, we examine the calculated tran_veme ztre_s distribution obtained from

FEA, as shown in Fig. 9. Note, only the case for the low stiffness ratio (s_ ffi 3) is shown in Fig. 9 as

the FE-remlts for the higher stiffness ratios appear similar. Relative to the FE-results for the longitudinal
loading ca_, the difference in the ''mean" matrix stress of the x_lume of material between the tt_ fibers

in the loading direction and that of the ''mean" fiber stresses for the tranzveme loading case are _aall.
Consequently, the inaccuracy caused by haxSng similar stress statas in a giveaa rot, or cohmm of subcells

within GMC is small; thus explaining the lack of influence the stiffness ratio has on the GMC predictions
relative to those ¢h_ermined using an FEA unit cell.

Figures 10 and 11 show a comparison of the axial Poisson's ratios based on the variotLs exaluation methods.

Again the comparison bet_en FEA and GMC results are quite favorable, irrespective of aspect ratio and

stiffne_ ratio; the difference being approximately a maximum of 5.20/0. Again, the GMC results follow the

qualitative trend of the FE-results much better than either the Hashin Shtrikman estimates or MTM-results,
especially for the case of high stiffness ratios and low fiber aspect ratios.
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Figure 6: Example for the longitudinal stresses obtained from FE-calculation for s, = 3 and s, = 30

(_),, -- 0.2. (/If = 5.0)
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Figure 11: Comparison of axial Poisson ratios for s,, 30

Similarly, results for tile in-plane Poisson's ratio t,2a appear in Figs. 12 and 13. Once again, in general

the GMC results are slightly above those produced with FEA. The Hashin-Shtrikman estimates being closer

to the FE-results than the GMC results. The discrepancy between methods being more evident with higher

fiber volume fraction than higher stiffness ratios. Even so, the maxinmm error between the GMC predictions

and those of FEA is at most 4.8%.

4.2 Elastoplastic Material Behavior

In this section the elastoplastic stiffness behavior of aligned short-fiber composites will be analyzed using

primarily the GMC and the finite element method. A comparison of the resulting predictions should confirm

whether or not the GMC is capable of accurately simulating the elastoplastic stiffness behavior of DRX

materials. Additionally, results obtained from a semi-analytical elastoplastic shear lag model (see Appendix

B) are included as well to help illuminate any differences between the methods. The investigated model

parameters are similar to those of the elastic investigation, with the exception that only two fiber aspect

ratios (a,, -- 5 and 25) are examined. Furthermore we restrict ourselves to the case of longitudinal (xl-

direction) loading so as to allow the inclusion of shear lag results.

Figure 14 shows the effective longitudinal stress-strain curve produced by the GMC (dotted and dashed

line), FE unit cell (solid line), and shear lag (symbols) models for the special case of Vf = 0.2, a_ -- 5, s, = 3.

Clearly, a large difference in the longitudinal stiffness response exists, depending upon the analysis method

employed, with the GMC model predictions being significantly softer. The question before us is whether or

not the lack of shear coupling inherent in the GMC method is the primary cause for the softer elastoplastic

behavior. To address this question, we introduced a semi-analytical shear-lag-model (and shear-free model) as

described in Appendix B. A comparison of the shear-lag (open circles) and shear-free (open square symbols)

models with those of FE and GMC are also shown in Fig. 14.

Evidently, the 8-subcell (1 fiber subcell surrounded by 7 matrix subcells) GMC results and the shear-free

model results agree extremely well; whereas, those determined using the etastoplastic shear-lag model agree

with those coming from the FE unit cell model. Consequently, it may be concluded that:

1. The difference between the GMC- and FE-simulations is directly related to the lack of normal-shear

coupling inherent in the GMC formulation.
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2. The standard (xvithout any modification,s) GMC-modei is not well suited for predicting the elastoplastie

response behaxdor of DRX materials, as the GMC-model predicts an overly soft plastic response.

3. The zemi-analytical elastoplastie shear-free and shear-lag models introduced in Appendix B appear

frilly capable of predicting both the GMC- and FEA-results. The primal- dgsadvantage of this shear-

lag model being its "tmiaxial" nature, that is, it can only prox4de the effective modulus (respon,se) in
a single direction.

In addition to the poeudo-square 3 fiber (8-subcell) GMC representation (dotted line) in Fig. 14, the
_'pical (338 suboell) circular fiber unit cell (dashed line) is shown inFig. 14. Clearly, a dlscretization effect

is observed and ls a result of the piecewi_ plastification of the matKx subcelLs between the two fiber ends

in the case of the finer OMC-modeL This effect results in a softer respon,_e _ithin the initial plastic range
(i.e., from 0.2 - 0.5% strain range). After plastification of all matrix subcells the effective hardening slope of
both GMC unit oells are e_entially the same.

To verify the above conclusion,s, simulations x_dth other aspect ratios, xxflume fractions and stiffiaee_ ratios

were conducted with the results being displayed in Fi_s. 15 - 18. The semi-analytical shear-free model is not

shox_m in these figures as its results alw_s agreed with the GMC (pseudo square) simulations. The fitting
parameter z_ of the semi-analytical shear-lag-model is found to be only a function of the fiber v_lume fraction

i.e. u) = _(Vf) and takes a value of approximate b- 2 for Vf _ 0.2 and approximately 2.5 for Vf -_ 0.5. The
dashed lines in all figures represent the effective stre_s-straln response of the standard circular GMC-model.
All figures confirm the above conclusions.

Some characteristic features of the effective finite clement stress-strain curves in Figs. 15 - 18 are evident;

for example, increasing either the aspect ratio or x_lume fraction significantly hardens the composite response,

particularly for high stillness ratio materials. The elastoplastie stiffness response may be partitioned into

three ranges. Figure 19 shows these ranges as a function of effective longitudinal strain.

Range 1, delineates the domain where linear elastic behaxior is manifestecL This is followed by range 2
in which a large variation in the hardening slope takes place and range 3 in which approximately a constant

3In GMC the geometD" of the subceU representing the fiber is square: however in actuality since all fields are taken at the

centroid of the subce]l on])" the ratio of subcell to total length is important, no corners are felt. Thus the square fiber is really

a pseudo-square.
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effective hardening slope is observed. More detailed inx_tigation_s into the flow hehaxior show that at the

beginning of range 2 the matrix material betw_aen the two fiber ends begins to yield first (see Fig. 19, point

1). After which the whole matrix yielde (point 2). During the longitudinal loading step the matrix from the

side-to-side region tries to mow to the end-to-end region. This material flow leads to a con_siderable shear

loading of the side-to-side matrix interphase (between fiber and matrix). In the plastic range large shear

deformations of the interpha.se start at the fiber ends (point 3), then grow ox_r the fiber and prex_at any

additional loading of the fiber. In the case of the semi-analyticai shear-lag-model this means that one _-

one each non-linear truss element will start to yield. All tru_ses are plastic at point 4 (see Fig. 19), which is

the beginning of range 3. Note, the stair-stepped da_ed line in Fig. 19 indicates the piece_se yielding of,

altogether, five trtL_s elements.

Ba._l on these results, the question remaining is whether the ChIC can be appropriately modified in

order to predict accurately the elastoplastic behavior of DI_X materials. Considering w_" the GMC fails.

it becomes clear that if the matrix betx_een the two fiber ends yields, the fiber is no longer capable of

carrying any additional load beyond the matrix since both the matrix and fiber haw the same stress state.

This continuity of specific streas components along a given row or column of subceUs is a direct nasult of the

inherent lack of normal and shear coupling with ChiC. Gi,_m this fact, a simple modification to ChIC would

be the introduction of an artificial matrix material for all .subcelLs x_ithin the region between the tx_ fiber

ends. This new artificial matrix material must be chosen so that the resulting effective stress-strain curve

produced corresponds with the reference data (be it experimental or analytical). Of course this strategT

the drawback that the obtained micro-mechanicai CMC stress state is no longer hazed on an)"

physical meaning: i.e., fracture, damage or fatigue analyses could no longer be performed confidently when

truing the modified GMC-results, as the microfield quantities x_gmld be even more questionable than before.

A_s a first attempt, the artificial matrix material was az_umed to behave as purely elastic, with the

a._ociated Young's modulus of the artificial matrix material being that of the matrix itself. Clearly, such an

assumption results in the overestimation (at least g_ell within the pl_,stic range) of the elastopla,stic respon_se

curve as illtLstrated in Fig. 20. This response prediction is non-con,serxative. In contrast, it is shown that the
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standard GMC-model provides a lower bound (conserx_ttive response prediction) for the effective elaztoplaztic

behavior, thus suggesting that an artificial bilinear el&stopl&stic material might provide a more accurate
zimulation. For such a material definition, four material parameters would be required az input; they are

1) PoL_on's ratio, 2) ¥oung's modulus, 3) yield strew, and 4) the pl&stic hardening slope. With the 3ield
stre_ and hang slope being the be_t candidates for modification from that of the matrix material, since

the elastic range is already acoarateh" predicted, the parameters (E,u) can be taken to be that of the matrix

material. Here we restrict oumelves to the modification of the hardening slope alone (keeping the yield

the same az the of the matrix) and thereby attempt to obtain the unlmown artificial hardening slope E_/

from the consideration of a simple one dimeasional spring model (with each spring corresponding to a given

subcell) which is shown in Fig. 21.

The following dLsctmzion is limited to range 3 in Fig. 19 (i.e., the range where the effective hardening

slope is approximate_" constant). As_Lme an incremental load, =XF, is applied to the spring aze_nblage in
Fig. 21. This results in an incremental displacement, Au, that depends on both the geometry and material

properties of the spring assemblage, that in,

(1 1)-_ ' if + E_A r Ex(A--Ar)
+ _ Au, (2)

ErA1

where A is the total cross sectional area of the considered unit _ and Af the fiber cro_ sectional area.

EH and E_ are the hardening slope and artificial har_afing slope, respectix_y. Alternatively, the global

longitudinal stiffness behavior can be described _"

ffi (3)
l

where E_ f is the effective longitudinal hardening slope. The combination of Eq_. (2) and (3) , and the

introduction of the follo_Sng abbreviations,

E/ ::: lr ffi , VI ffi Aft/":,. ffi °-,-ffi (4)
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lead to the final equation for the artificial hardening slope:

EH s{',H(I_I_)/ <t';" __k_ 1). = + (5)
r sfE. - 1)+ l (a - W

Note. the only untmo_n in this equation Ls the effecCi\_ longitudinal hardening slope E_ 'f which for example

m_" be determined from the semi-analytical shearqag model (.see Appendix B) or obtained from some other
reference data.

A comparison of the FE-, GMC-, GMC-bilinear-modified-model response histories are sho_aa in Figs..02.-
25. Evidently, as one might expect, the GMC-model, modified _" truing an artificial b'llinear matrix material

definition in the intemaediate subceU, results in a more accurate longitudinal simulation than the pre_ious

standard GMC-model (,see Fig. 14 and that modified using an artificial elastic matrix material definition).
With this approach, reasonably accurate results can be produced when range 2 is small, typically for high fiber

aspect ratios and low stifMe_ ratios. Alternatively, for situations inx_lx_ing high stii_e_s ratio materials,

low _lume fraction,s and high aspect ratios (e.g., a_ = 25, .see Fig. 24) simulatious using the modified

GMC approach give the largest error. This is due to the fact that these conditions induce the smallest area

(highly loaded) subcell between fibers and thus maximi_es the flow between indusion_s: there," producing

the m_st compUant overall response. Clearly, only a small difference exLsts between FE and GMC results in

the exte__six_ plastic range. This i.s due to the fitting procedure utilized for the simple spring model. Note

that, again all response histories are conserxative when compared with FEA simulations.
More detailed studies _vere not performed at this time using a more complex artificial matrix material

definition, since the actual tmefulne_s of such an ad-hoc approach is debatable due to the lack of any real

physical meaning. Furthermore, a new higher order GMC theo_" (appropriately termed - high fide[ity

GMC), which provides the necer_a_ normal and shear coupling, has recently been dexeloped _- [Aboudi et.

al.(2001)]. This new formulation, although more computationally demanding than the standard or modified
GMC (but significantly faster than the FEA approach) should provide the required balance betxveen speed

and accuracT when attempting to simulate DP_X material behax_ior.Consequently, furtheranalysisusing

the GMC will be reserved until later when the theoretical extension of the present elastic continuously

reinforced high fidelity GMC _ersion (see [Abeudi et. al.(2001)]) to that of discontinuous and inelastic

material behavior, is accompEshecL
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5 Conclusions

This paper has focused on ex_uating the predictive ability of the generalized method of ceils, in the

context of discontinuou,sly reinforced compc_site (DRX) material l__havior: specificalJy aligned short fiber

composites. GMC simulations were compared with: i) simulations truing other micromechanical based mean

field model_ and finite element (FE) unit cell models found in the literature for the elastic range, as well

as it) finite element unit cell model and a new .semi-analytical elastoplastic shear lag model in the inelastic

range. P_ults indicated that the GhiC is fully capable of accurately analyzing the elastic behavior of DRX
material_. Howexer, in the case of inelastic behavior, the standard GMC approach, due to the inherent lack

of normal-shear coupling, was shox_ to be unsuitable for predicting the longitudinal elastoplastic behavior

of aligned short fiber reinforced coml_sites. Hox_ever, a _mple modification of the GMC-model, through
the introduction of an "artificial" b'flinear matrix material definition within the subc_(s) residing between

inchtsion (fiber) ends wa,s .sho_nn to improve the oxerly conservative GMC predictions _Sthin the el&stoplastic

regime significantly. This ad-hoc modification to the ChIC unit cell definition would allow reasonably
accurate multiaxial simulations to be made. The case when both the stiffness and fiber aspect ratios are

high being the least accurate. Finally, it was shown herein that an elastoplastic shear lag model can
provide identical uniaxial results to that of the FE unit cell calculations. For truly consistent and accurate
results it is recommended that a high fidelity micromechanics approach be nsed when examining inelastic

dgscontinuonsly reinforced comtx_site behavior.
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6 Appendix A: Generalized Method of Ceils Formulation

GMC ca_ predict the elastic and inel&stic thermomechanical response of both continuous and discontin-

uous multiphased composite material_ with an arbitral internal micrc_structure and reinforcement shape.

It is a continuum-based micmmechanies model that pmx_ides clo._ed-form expr_sions for the macro._opic

composite response in ternls of the properties, size, shape, dLstribution, and r_ponse of the individual con-

stituents or phases that make up the material 4. These coustituent materials can be represented using any

elastic and/or inelastic deformation and life (e.g., continuum damage mechanies fatigue model) model. The
periodic nature of composites typically allows identification of a repeating unit cell that can be used as a

building block to construct the entire compc_site. The properties of thgs unit cell are thus represeaatative of

the properties of the entire _semblage once the subcell dinlensious and appropriate subeeH materials are

_lected. Thus, unidirectional long-fiber compc_sites, short-fiber compc_sites, porons materials and laminated

materials can all be modeled as special cases.

6.1 Model Description

Consider a compasite material with a periodic structure whc_se repeating x_lume elenmnt censists of

.\_ × -V3 × A_ rectangular parallelepiped subcelLs. The _lume of each one of the subcelLs is d_h3L_, where

a, 3 and _ are running indices: a = 1 ..... A_ : 3 = 1.... Nz ; _ = 1.... , _\'_, in the xl , x2 and x_ -
N,,

directions, respectively. The total xx)lume of the repeating x_lume element Ls dh( where d = _---,,,=1 do ,

h = _-_3=1 hz , C = _-_c\_1 (q" In Fig. 26, an example is ahoxvn for a repeating xDlume element with A_ = 2.

A'3 = 3 and A% = 3.

iX3

Subcell 1

h3 d2

13=3 h 2 _=2
13=2 h 1 dl

[3=1 ct=l

x1

Figure 26: Triply periodic repeating unit cell, illustrating suhcell dimension nomenclature.

By an approximate micromechanical analysis of the detailed interactions of the subcelis of the repeating

x_lume element, overall constitutive relations which gevern the effective behavior of the multiphase elasto-
plastic composite, can be estabLLshecL This analysis relies on the requirements that static equilibrium of the

materials in the _trious subcelLs are ensured, and that continuity of the displacements and tractions between

neighboring subcelLs _-ithin the repeating _lume element, as w_ell as between neighboring repeating x_lume

elements is _atisfied on an average hazis.

_Note. each of the subcells can be comprised, in general, by an elastic-viscoplastic temperature -dependent material.
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:_s the average behavior of the composite is sought, it is sufficient to consider a first order theory in which

the dLsplacements ul a3_) in the subcelLs are expanded linearly in ternts of the distances from the center of

each subcell, i.e., in terms of the local coordinates _al x2-(3), and _(3_). Thus, the first order expansion in

the subceU (03_) isrepresented as,

l,, 3_ 1 = w(i,_3_, (x) + _._,,)O_o 3",) ._ £.(_,31.X_'o 3-_) +x 3-('_I '"a'_!Wi i = 1.2, 3 (A-l)7Ai . ,

where wl_3')(x) are the displacement components at the center of the subcell, and OIi°3_) , XI _3_) and

Wl "3_) are micro-_ariables that characterize the linear dependence of the displacement uf_°_n) on the local

_(o) -(3) ._(3_)coordinates x a , x2 , . In Eq. (A-l) and the sequel, repeated Greek letters de not imply sunmaation.
Note that due to the linearity of Eq. (A-l) , static equilibrium of the material xvithin the subcell (ca3_) is
_[LsurefL

The components of the small strain tensor are given _"

¢ij = _(aiuj +dju i ' ) i,j = 1,2,3 (A-2)

where 01 ----c9/o9-2_") , o92 ----c9/o_(23) and 03 = _/o_ _ ) •

The volume averaged total strains and strea_es in the composite are expressed, respectively, as

1 _ xn A%
_ -_(o_) (A-3)

o=1 3=1 "_=1

and

I N_, Nz A%

a----1 ,9----1 -}-----1

with the relationship between the averages of the stress =(,_9_) total strain inelastic strain -It_3_)tT ij _ tij _ ¢ij

and thermal strata"" _T(_ijoZ,) = trig-(_3_)_ k_where al_.z,)isthe coefficientofthermal expansion tensor,and AT

isthe temperature deviationT- Ti_ from a referencetemperature T_) being _ix_n Ira-the classicHookean

cconstitutiveequation

_(a_) ..(_),_(o_) _/(o_) ;T(,_Z_)_ (A-5)

where C_;_ 3_) is the elastic stiffne_ tensor of the material.
It has been shown ([Pal_" and Aboudi (1992)] and [Aboudi(1995)]) that _" empl_in s the displacement

and traction continuity conditions at the interfaces between the subcelis of the repeating _lume element,

and at the interface_ between neighboring repeating volume elements, it is possible to eliminate the micro-

variables and obtain, via a ,_anoothing operation (homogenization), a set of continuum equations that model

the overall behavior of the multiphase short-fiber composite. This was achieved _" establishing relationship_
wkich connect the microstral_s at the sub<_s to the total overall macrostrains in the composite via the

appropriate concentration tensors, A and D.

6.2 Overall Thermomechanical Constitutive Law

Given these concentration matrices, A (_) and D _$_), expressions for the average total strain and

stress,respectively, in each subceU can be constructed: that is,

_(o_) = A(_)_ + D(_)(d_ + ,,_) (A-e)

and
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in ternls of the unifoma oxerall strain _ (the applied macrostrain) and the subcell inelastic and thermal

stral_s, where

and A..w inx_h_s the elastic properties C 1_3_ of the subcell material, A.c the geometric dime.nMons of the

repeating cell only, and J Ls a matrix containing the imlxxsed axlerage (composite) strains. Note, A !°a-'_

and D I'a-'l are ,square matrices of 6.\_NaA'_ order. Similarly, notice that the same matrices D _'a-'! are
operating on beth the inelastic and thermal stral_s of the subcelts.

It wa.s shoxx_ _- D_rak and Berne_Mate (1992) and Dx_rak (1992) that for any representatixe x_lume

element under a uniform oxerall strain _ and temperature change _T, which contains a piecewise uniform

distribution of thermal and inelastic fields (eigenstrains) a_ociated xdth the applied loading _, the axerag_
of the local strahls can be e.xpre_d in ternm of the mechanical and eigenstrain concentration tenors. These

tensom depend on the local elastic moduli, and on the shape and x_lume fraction of the phaz_ and are

therefore constant. Equation (A-6) is consistent with this representation of the axerage subcell strain, where

the constant mechanical and eigenstraln concentration tensors are gix_.n _ A (oa-') and D __ a_i, respectixely.
Consequently, the folloxving effective elastoplastic thermomechanical law of the composite can be estab-

Eshed

= B*(_ - # - _r) (A-S)

where the effective elastic stiffT_ess tensor, B*, of the composite is gix_en _

1 ,% x_ ,\+B*=

c,=l 3=1 _=1

and the composite inelastic strain tensor is defined as

_I _ --B*-I N,, N_ .%.

o=1 3=1 ',=1

and the average therraal strain tensor as

(A-10)

_T --B*-1 '%k Ns A_

o=l 3=1 0=1

and thermal, T strains being defined as:with subcell inelastic, %, %,

(A-11)

(A-12)

T (_T(111) ., _T(N,. No>,'. 1)

The effectix_ coefficient of thermal expansion x_c-tor, ¢_* of the composite, is gix_n _-

(A-la)

v,* = _T /._T (A-14)

The abex¢ mieromechanieally established o_rall thermo-inelastie constitutix_ law (A-S) Ls _alid for any

type of thermomechanical loading (i.e., any combination of normal, .shear and thermal loadin_gs ). A significant

a&antage of this constitutix_ law st_a_s from the fact that it does not rely on any s3anmetry conditions that

m_ exist under certain types of applied loadinb-s. Thtm in the implementation of this law, the question _.s
to whether such s3mametr3" conditions ex£st or not Ls irrelexant.
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7 Appendix B: Semi-analytical Axisymmetric Elastoplastic Shear

Lag Model

Given the ela.stopla._tic inx_estigation_ under taken in thLs study, a simple shear-lag model for aligned

short fiber coml_site_ Ls introduced. As mentioned in the background ,_tion, shear lag models were the

first micromechanics modeLs considered for aligned short-fiber composites. Despite some serious theoretical

flaws (e.g., the ability to predict only the longitudinal modulu._ Ell within the el&_tic range), shear lag modeLs

have enj_-ed enduring popularity; probably due to their algebraic simplicity mad their physical appeal, ha

this paper, xxe have purposefully limited our im_tigation to the longitudinal ela.stopla.stic stiffn_s behaxior

so that the prol_sed modified shear lag model can be appropriately utilize.

Follo_ing Cox (1952), the shear lag analyses are foctL_cl on a single fiber of length If and raditm rf,

which Ls enc&sed in a concentric _lindrical shell of radius FL Such a configuration then leads to the k_

a_sumption of a shear lag model, which is that the shear stre_s between fiber and matrix (r_:, r. ¢. z...

_-lindrical coordinate system) Ls proportionai to the difference in displacement betwcen the fiber surface and

the outer matrix surf'ace, i.e.,

H (w(FLz)-w(rf, z)) (B-l)

where H Ls a con.stant and can be written a.s

H = ln(Fl/rf)- 1" (B-2)

It remains to choose the raditts/_ of the outer matrix _-linder. Several choices have been used (see e.g. [Tucker

and Liang (1999)]). For our purp_ it appears most realistic to let F_ be equal to a raditm corresponding

to the width of the FE or CMC unit cell. The above equations are b_l on a one-dim_ional analysis of

a fiber surrounded I_" a matrix layer (i.e., the Poisson effects are neglected (taken to be zero)) and a.asumes

linear el&stic material behavior. To e:_tend this analysis into the elastopla,stic regime of aligned short fiber

composites, the existing shear-lag model must be modified so a.s to:

1. account for el&stoplastic material behavior and

2. the appropriate Poisson effect.

The ela_toplastic material l_ha_dor Ls simply introduced _- replacing Gm by the plastic tangent shear

modulu_s GH ("shear hardening slope") and an incremental formulation of Eq. (B-l), i.e.,

with

-H (dw(Fi, z)--dw(rf, z)) (B-3)

---- 2_rGH
hl(_/rf)- 1" (B-4)

This new "shear hardening slope" can then be obtained from the Prandtl-Rett_s-equation. For a pure

shear load in the r-z-plane this equation can be written &s

1 3 d'r_:
d_ = _--_--d_-_ + r_ (B-5)

2

and loads finally to the shear hardening slope

d'r'rz GmEH

GH = dc_ = W EH + 3Gin = const (B-6)
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Axial- symmetry Matrix
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Fiber

IV

Symmetry

Figure 27: Sketch of the semi-analytical .shear lag model

where G_ is constant because EH is a constant. Note, _vithin the plastic range a fitting parameter _ is

al_ introduced. This fitting parameter xvill account for effects which can not be captured _" such a simple

model.

The Poison effect is taken into account _- considering an ayds)_metric modal (shown in Fig. 27 using

an exploded view) with appropriate bounda D" conditions on the concentric _'lindrical matrix shell.

The model posses the foUowing characteristics:

1. The c_xo_ section of the axis3unmetric model is divided into four re_ions (I, If, ///, IV). Further,

re_ons III and IV are subdivided into three subre_ions each, e.g., Ilia, IIIb, IIIc and IVa, IVb,

IVc (see Fig. 27).

2. Within all region_ only normal stress is allowed (i.e., shear stresses are zero) such that rectangular

c_s sections of individual regions remain rectangular after loading.

3. The longitudinal stre_s are constant within regions I and II and are piecewise constant within regions

III and IV (i.e., constant within earl1 .subregion).

4. The points 1-1', 2-2', etc. are connected with non-linear truss elements which characterize the shear
forces between the fiber and the matrix.

. The stii_e_ behavior of each non-linear trtL_s element, i, is bo._d on Eq. (B-l), and follows from

where, e.g., for i -- 1, l_ is the distance bet_x_aen points 1 and 2 in Fig. 27 and represents a "kind of
shear-influence length for truss 1. C_s s repree_mts the stiffnee_ of truss 1 between points 1-1'. The
material behavior of the tru_s element is bllinear and is characterized _" a '3"ield force" (which is based

on Tresca's yield condition for pure shear within the interface) and can be written _s
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a.s well a_ _- a stit_e_ hardening slope which can be written as

i

The number of introduced tru_s elements depends on the desired aspect ratio. For ar = 5 three trtLss

elements were tt_d, where_s for ar ----25 she tru_e_ were applied.

6. Finally, in addition to the ss_mletD" conditio_ sho_wa in Fig. 27, s3-nunetD Lsalso required on the top

and right outer surfaoe of the axLssamnetric model (see Fig. 27).

The introduced semi-anal3"ticaJ ,_hear lag model Ls _olx_d numerically lazing the finite element method.
The _ called ._.mi-analytical shear-free model Ls obtained _- _._unfing that the tru_s elements are

characterized _" zero ,_tiffnes_. Such a model represents a standard GMC-model.
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